Follow us on:
Perspectives

¿Sociedad de la información o sociedad inundada de información?

Monday, 24 July 2017 Maria Jose de la Calle Posted in iTTi Views

El uso de las tecnologías de la información con su capacidad de comunicación y producción de datos e información, ha conducido a una inundación de los mismos, inundación que está produciendo una incapacidad para leer, comprender, juzgar e interpretarlos, debidamente. Una consecuencia de esto, es la propagación de noticias falsas en las redes, a veces por desconocimiento, a veces con intenciones aviesas. 

El vocablo "inundar" proviene de la palabra latina inundare, que significa llenar de agua. Así lo expresa el Diccionario de la Real Academia de la Lengua Española (DRAE) en su primera acepción, es "Dicho del agua: Cubrir un lugar determinado".  A lo que se añade una tercera "Dicho especialmente de un gran número de personas o cosas: Llenar un lugar". 

Así mismo, el DRAE en la entrada de "informar", nos informa que viene del latín informāre: 'dar forma', 'describir'.

Así pues se puede afirmar que la información proporciona descripción de fenómenos, situaciones, actividades, personas, cosas, etc.  

Los datos y la información no sólo los generamos los humanos, también los generan las máquinas. El V informe de INCAPSULA[i]  del tráfico producido en la red proporciona el siguiente dato: el 51,8% es creado por máquinas, no por personas. 

La Información se vierte -o vomita- en la red en forma de texto o imágenes sobre lo que sucede a nuestro alrededor. La inmediatez con que llegan las noticias colocadas en la web por cualquier testigo presente con un dispositivo móvil, ha producido que ya no se necesite tener a un periodista presente para contarlas. De hecho no es infrecuente ver vídeos o fotos tomadas por "aficionados" en las páginas web de periódicos, o un artículo-noticia "veteado" con "tweets" recientes de testigos de la noticia.  

Unido a esto, hay aplicaciones o bots[ii] que la generan automáticamente, como el caso de los que utiliza la BBC[iii]. En Twitter, detrás de entre 9% y el 15% de las cuentas no hay personas[iv]. Son utilizadas para generar visitas a web poco visitadas -por personas-, generar spam, crear tendencias; o -por proporcionar ejemplos más positivos-, para atención al cliente o como asistentes.  

Tal abundancia se puede llevar por delante y dañar la calidad de la propia información. Cuando se habla de la seguridad de la información, se está haciendo referencia a la confidencialidad (C), integridad (I) y disponibilidad (D). Quizás a la seguridad de la información, para que ésta sirva para "dar forma" adecuada a hechos y cosas en general, habría que dotarla de otra cualidad, que es la veracidad, que a diferencia de la tríada C-I-D, no es un tema técnico, sino más bien de conocimiento de la disciplina relacionada con la propia información. 

Las inundaciones constituyen, en la mayoría de los casos, fenómenos adversos que destruyen el "lugar que llenan",  llegando a producir daños al medio ambiente, a propiedades e incluso, a las personas. Se lo llevan todo por delante, allá por donde pasan. 

De igual manera, la inundación de datos e información hace que éstos se tornen inútiles. Trae una mezcla de datos veraces y otros no tanto, de datos útiles e inútiles, de información publicada con una intención de informar o de desinformar. Hay que tener la capacidad de saber separar aquello necesario de lo que no lo es, y lo que es cierto de lo que no, de intuir el propósito que subyace a ella. Hay que saber elegir e interpretar aquello que sea útil para el propósito que se busca, en un tiempo razonable. Esto es lo que se  denomina pertinencia. 

La información no adecuada o falsa puede causar daños ya que puede confundir, dañar la imagen de una persona u organización, o manipular una toma de decisiones. 

Por ejemplo, en unas elecciones la manipulación de hechos dirigidos a la 'opinión pública', con el fin de conseguir votantes. Este fue el caso de las últimas elecciones presidenciales en EEUU, según la publicación de la Universidad de Stanford "Social Media and Fake News in the 2016 Election"[v], en que se puede leer la preocupación por los efectos que las falsas noticias que circularon por las redes sociales, la mayoría de las cuales favorecían al presidente electo, y cómo dichas noticias podían haber inclinado la balanza hacia él.

La importancia de la información y su control no es un tema nuevo. 

Así, el profesor Josep Fontana en su libro "La historia de los hombres"[vi], explica "la aparición de una 'opinión pública' a partir de mediados del s. xvii". Un fenómeno ligado al surgimiento de una auténtica 'industria de la información' que multiplicó las impresiones de cartas, folletos, gacetas y, en general, de textos breves y accesibles a un público extenso, que se ocupaban de crítica política o reproducían todo tipo de noticias del momento. Y añade "la importancia que tuvo en Italia y Francia esta revolución de la información que llevaba a los propios historiadores a decir que vivían en un tiempo "lleno de noticias" y que obligó a los gobiernos a tomar historiadores a su servicio para combatir los efectos de la crítica (Luís XIV de Francia tenía en nómina a 19 historiadores)".  

El adjetivar el tiempo en que vivían como "lleno de noticias" nos hace sonreír.  Con el apoyo de las Tecnologías de la Información, la cantidad de información que se genera y distribuye en el mundo hoy día es enorme. Para medirla, y tomando como base el byte[vii], se ha pasado desde el comienzo de estas nuevas tecnologías, de kilobytes (Kb = 103 bytes),  a megabytes (Mb 106 bytes), gigabyte (Gb = 109 bytes), terabyte (Tb = 1012 bytes), petabyte (Pb = 1015 bytes), exabyte (Eb = 1018 bytes), zettabyte (Zb = 1021 bytes).  

Un artículo[viii] de hace un año de la "Northeastern University" ya decía que al día se producían 2,5 Eb, equivalentes a 90 años de grabación de vídeo en alta definición, o a 150 billones de canciones o a 250.000 veces el contenido en digital de la biblioteca del Congreso de EEUU. 

Se habla de la sociedad de la información, de la información como la energía del siglo XXI, de la revolución de la información. Pero para que ésta constituya un bien para todos y riqueza parala sociedad, es necesario aprender a utilizarla, a producirla y a distribuirla. Hay que cuidarla y mantenerla adecuada para el consumo, al igual que el agua. La información contaminada, puede causar muchos daños. 

¿Qué es la información?

La información es el resultado de la interpretación de unos datos: primero hay que conocer la bondad de dichos datos, y segundo, fijar un contexto para interpretar dichos datos.  

Por tanto, con el fin de poder hacer uso de una información, hay que tener la capacidad para analizar ambas cosas: los datos y el contexto utilizado para interpretarlos. Así, se podrá distinguir lo verdadero de lo falso, o la intención que pueda subyacer a la información.

¿Pero hay tiempo de reflexión suficiente o criterios claros a la hora de retwittear o dar un click en a "me gusta"? ¿Hay capacidad para una adecuada selección da datos a la hora de utilizarlos? 

Desde luego nos podemos servir de herramientas que ayuden a esta tarea, pero dichas herramientas están basadas en criterios de selección, clasificación y extracción que también se deberían conocer, ya que podrían estar creados para dar unos resultados no acordes con los fines buscados. Recordemos además que todo filtro supone falsos positivos y falsos negativos. 

Para esto, la educación tiene mucho que decir. Sin ir más lejos, en la plataforma de cursos gratuitos en-línea (moocs) "edx" hay un curso "Fake News, Facts, and Alternative Facts"[ix], "para aprender a distinguir fuentes de noticias fiables e identificar los sesgos de la información para llegar a ser un consumidor crítico de la información". 

Cómo decidir si una información es falsa  

En una reciente infografía[x] de "Futurism.com" se puede leer lo siguiente: "Las noticias falsas son un serio problema en EEUU a día de hoy por varias razones: está influenciando las acciones de las personas, y éstas están teniendo dificultades para entender qué noticia es verdadera y cuál es falsa". 

La existencia de tantos datos e informaciones falsas, parece que ha empezado a preocupar. A juzgar por las noticias publicadas, lo que ha disparado dicha preocupación han sido las últimas elecciones en los EEUU -como el ya comentado documento de la Universidad de Stanford o la infografía de Futurism- en las que se ha hecho una utilización masiva de las redes sociales, y en las que se podía saber minuto a minuto todo lo que decían los candidatos y lo que se comentaba de ellos, fuera cierto o no.  

En la infografía se proponen tres soluciones: que quien edita la noticia se asegure de que es cierta -solución que ya en publicaciones de cierto rigor se viene haciendo-; que sean los usuarios/lectores quienes juzguen, marcándolas en un sentido u otro; algoritmos que las marquen, solución que ya se ha puesto en marcha en algunas redes.

Tanto la primera solución como la segunda dependen del "buen hacer" de las personas, y el proceso a veces es lento para la velocidad de comunicación en la web. En cuanto a las soluciones automatizadas, se pone en manos de unos pocos -las empresas dueñas de dichas soluciones- la importante tarea de marcar datos e información como no falsos. 

Según el artículo de "The New York Times", "Google and Facebook Take Aim at Fake News Sites"[xi], las redes sociales no se libraron de las críticas por permitir las noticias falsas. Tanto es así, que tomaron cartas en el asunto: Google prohibiría las web que difundiera noticias falsas, y Facebook no mostraría publicidad de páginas -sites- que incluyan noticias falsas.

Posteriormente, Facebook, según un artículo[xii] de Vox del pasado 27 de marzo, obligaría a dar dos clicks para poder compartir una noticia que según sus algoritmos considerara falsa, marcándola con una etiqueta "disputed" (controvertida).  

Las medidas que implementan dichas empresas en sus herramientas, están basadas en algoritmos de los que hay que fiarse sin saber muy bien cómo funcionan. 

Esto se complica más si dichos algoritmos pertenecen a la categoría de la "Inteligencia Artificial"; la cuestión de conocer cómo está funcionando un algoritmo concreto sería un tema difícil de resolver: el sistema adapta sus algoritmos dependiendo de los nuevos datos que trate. Citando un artículo[xiii] de la "MIT Technology Review", "Nadie realmente sabe cómo los más avanzados algoritmos hacen lo que hacen. Esto podría ser un problema". 

Cualquiera de de las tres soluciones parece tener sus problemas, quizás la solución no sea una u otra sino todas al unísono. 

Pero hay una última de la que no habla la infografía, que ya he apuntado antes: la educación, es decir, aprender a tratar la información, contrastarla con diferentes fuentes, aprender cómo conseguir fuentes fiables. Y tomarse el tiempo suficiente -dependiendo de las consecuencias de la acción posterior- para tomar en consideración una información u otra.  

En definitiva, aprender a vivir en la sociedad de la información. 

* * *

Este artículo fué publicado originalmente por @PuntoSeguridad.com/"Cuadernos de Seguridad", junio 2017, nº 323, pg.84, Ciberseguridad – "¿Sociedad de la información o sociedad inundada de información?" – María José de la Calle.

------------------------------------

[i] "Bot Traffic Report 2016". url [a 20170424]  https://www.incapsula.com/blog/bot-traffic-report-2016.html   

[ii] "Un bot (aféresis de robot) es un programa informático, imitando el comportamiento de un humano", según la definición que ofrece Wikipedia. url [a 20170424] https://es.wikipedia.org/wiki/Bot  

[iii] "How can we leverage bot technologies to reach new audiences on messaging platforms and social media?" url [[a 20170424] http://bbcnewslabs.co.uk/projects/bots/  

[iv] O. Varol, E. Ferrara, C. A. Davis,F. Menczer, A. Flammini (20170327)  "Online Human-Bot Interactions: Detection, Estimation, and Characterization".  url [a 20170424]  https://arxiv.org/pdf/1703.03107.pdf  

[v] H. Allcott, M. Gentzkow (201703).  "Social Media and Fake News in the 2016 Election".  url [a 20170424] https://web.stanford.edu/~gentzkow/research/fakenews.pdf  

[vi] "La historia de los hombres" Pag. 84. Josep Fontana. Ed. Crítica, 2001. 

[vii] url [a 20170424] https://es.wikipedia.org/wiki/Byte  

[viii] M. Khoso (20160513)  "How Much Data is Produced Every Day?". Northeastern University. url [a 20170424]  http://www.northeastern.edu/levelblog/2016/05/13/how-much-data-produced-every-day/  

[ix] "Learn how to distinguish between credible news sources and identify information biases to become a critical consumer of information". edx.  url [a 20170424] https://www.edx.org/course/fake-news-facts-alternative-facts-michiganx-teachout-2x  

[x] "Fake news is a serious problem in the U.S. right now, for several reasons: it is influencing the actions of real people, and people are having difficulty undestanding which news is real and which news is fake" Futurism.com. url [a 20170424] https://futurism.com/images/fighting-fake-news-can-technology-stem-the-tide/  

[xi] N. Wingfield, M. Isaac, K. Benner (20161114)  "Google and Facebook Take Aim at Fake News Sites" The New York Times. url [a 20170424]   https://www.nytimes.com/2016/11/15/technology/google-will-ban-websites-that-host-fake-news-from-using-its-ad-service.html?_r=0  

[xii] A. Romano (20170324) "Facebook is fighting fake news by making it harder — or at least more annoying — to share" Vox. url [a 20170424]  http://www.vox.com/culture/2017/3/24/15020806/facebook-fake-news-alert-fact-checking 

[xiii] "No one really knows how the most advanced algorithms do what they do. That could be a problem."  W. Knight (20170411) "The Dark Secret at the Heart of AI". MIT Technology Review. url [a 20170424]  https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/ 

 

Comments (0)

Leave a comment

You are commenting as guest.

Publícitis